Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Med ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2309306

ABSTRACT

Negative consequences and medical complications of COVID-19 can persist for up to several months after initial recovery. These consequences can include stroke, diabetes, decreased lung diffusing capacity, sleep apnea, pulmonary fibrosis, arrhythmia, myocarditis, fatigue, headaches, muscle aches, heart rate fluctuations, sleep problems, memory problems, nervousness, anxiety, and other neurological disorders. Thirty-one patients who reported symptoms related to previous COVID-19 disease of both sexes were enrolled in the initial program. The patients underwent compression sessions in a multiplace hyperbaric chamber. Each patient underwent a cycle of 15 compressions. Before the first session, each participant completed a venous blood gas test, a Fullerton test, and two spirometry tests (one before the Fullerton test and one after the test). Patients completed psychotechnical tests, a questionnaire on quality of life (Polish version of EQ-5D-5L), and a questionnaire on specific symptoms accompanying the disease and post-infection symptoms. The results showed significant improvements in areas such as quality of life, endurance and strength, some spirometric parameters, the anion gap and lactate levels, working memory, and attention in the group of treated patients. In contrast, there were no changes in pH, pO2, pCO2, glucose, and excess alkaline values. A follow-up interview confirmed that the beneficial effects were maintained over time. Considering the results obtained, including the apparent improvement in the patient's clinical condition, it can be concluded that the use of 15 compression sessions was temporarily associated with a noticeable improvement in health and performance parameters as well as improvement in certain blood gas parameters.

2.
J Clin Med ; 12(1)2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2245217

ABSTRACT

Mortality in COVID-19 is mainly associated with respiratory failure, cytokine storm, and macrophage activation. Oxygenation and anti-inflammatory effects of Hyperbaric Oxygen Therapy (HBOT) suggest that it is a promising adjunct treatment for COVID-19. Repeated sessions of HBO with standard COVID-19 therapy were used to reduce the inflammation and increase oxygenation. We evaluated the safety and efficacy of HBOT in avoiding the replacement ventilation and/or ECMO and its effect on the inflammatory process. Twenty-eight moderate-to-severe COVID-19 patients were randomized into control or HBOT group. HBOT patients participated in 5 hyperbaric sessions (60 min). Before and after each session blood gas levels and vital parameters were monitored. Blood samples were collected for extended biochemical tests, blood morphology and immunological assays. There were 3 deaths in the control, no deaths in the HBOT group. No adverse events leading to discontinuation of HBOT were observed and patients receiving HBOT required lower oxygen delivery. We observed decrease in CRP, ferritin and LDH and increase in CD3 in HBOT group compared to control. This study confirmed the feasibility and safety of HBOT in patients with COVID-19 and indicated HBOT can lead to alleviation of inflammation and partial restoration of T cell responses.

3.
Respir Med ; 209: 107155, 2023 04.
Article in English | MEDLINE | ID: covidwho-2242077

ABSTRACT

BACKGROUND: Hyperbaric oxygen therapy (HBOT) has been proposed to address COVID-19- associated respiratory failure. However, its biochemical effects are poorly known. METHOD: 50 patients with hypoxemic COVID-19 pneumonia were divided into C group (standard care) and H group (standard care plus HBOT). Blood was obtained at t = 0 and t = 5 days. Oxygen saturation (O2 Sat) was followed up. White blood cell (WC) count, lymphocytes (L) and platelets (P) and serum analysis (glucose, urea, creatinine, sodium, potassium, ferritin, D dimer, LDH and CRP) were carried out. Plasma levels of sVCAM, sICAM, sPselectin, SAA and MPO, and of cytokines (IL-1ß, IL-1RA, IL-6, TNFα, IFNα, IFNγ, IL-15, VEGF, MIP1α, IL-12p70, IL-2 and IP-10) were measured by multiplex assays. Angiotensin Converting Enzyme 2 (ACE-2) levels were determined by ELISA. RESULTS: The average basal O2 Sat was 85 ± 3%. The days needed to reach O2 Sat >90% were: H: 3 ± 1 and C: 5 ± 1 (P < 0,01). At term, H increased WC, L and P counts (all, H vs C: P < 0,01). Also, H diminished D dimer levels (H vs C, P < 0,001) and LDH concentration (H vs C, P < 0.01]. At term, H showed lower levels of sVCAM, sPselectin and SAA than C with respect to basal values (H vs C: ΔsVCAM: P < 0,01; ΔsPselectin: P < 0,05; ΔSAA: P < 0,01). Similarly, H showed diminished levels of TNFα (ΔTNFα: P < 0,05) and increased levels of IL-1RA and VEGF than C respect to basal values (H vs C: ΔIL-1RA and ΔVEGF: P < 0,05). CONCLUSION: Patients underwent HBOT improved O2 Sat with lower levels of severity markers (WC and platelets count, D dimer, LDH, SAA). Moreover, HBOT reduced proinflammatory agents (sVCAM, sPselectin, TNFα) and increased anti-inflammatory and pro-angiogenic ones (IL-1RA and VEGF).


Subject(s)
COVID-19 , Hyperbaric Oxygenation , Respiratory Insufficiency , Humans , SARS-CoV-2 , COVID-19/complications , COVID-19/therapy , Tumor Necrosis Factor-alpha , Interleukin 1 Receptor Antagonist Protein , Vascular Endothelial Growth Factor A , Respiratory Insufficiency/therapy
4.
Int J Environ Res Public Health ; 19(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116158

ABSTRACT

The coronavirus disease (COVID-19) epidemic is a public health emergency of international concern. It was believed that SARS-CoV-2 virus was much less likely affect children. Statistics show that children account for 2-13% of all COVID-19 patients in individual countries. In the youngest population, acute respiratory failure is not as serious a problem as complications after COVID-19, mainly pediatric inflammatory multisystem syndrome (PIMS, MIS-C). This study used a bibliography review. The Medline database (using the PubMed platform) and the Cochrane Clinical Trials database were searched using the following keywords: hyperbaric oxygen therapy for children, treatment of children with COVID-19, and use of HBOT in the treatment of children following COVID-19. Thirteen publications that quantitatively and qualitatively described the efficacy of HBOT application in the treatment of pediatric diseases were eligible among the studies; those relating to the use of HBOT in the treatment of children with COVID-19 and its complications were not found. The bibliographic review showed that hyperbaric oxygen therapy can be used in the treatment of children after carbon monoxide poisoning, with soft tissue necrosis, bone necrosis, after burns, or after skin transplant. No evidence supported by research has been found in scientific journals on the effectiveness of the use of hyperbaric oxygen therapy in children with a history of COVID-19 infection. Research data are needed to develop evidence-driven strategies with regard to the use of HBOT therapy in the treatment of children and to reduce the number of pediatric patients suffering because of complications after COVID-19.


Subject(s)
COVID-19 , Carbon Monoxide Poisoning , Hyperbaric Oxygenation , Humans , Child , COVID-19/therapy , SARS-CoV-2
5.
Medicina (Kaunas) ; 57(9)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1399336

ABSTRACT

Hyperbaric oxygen therapy (HBOT) consists of using of pure oxygen at increased pressure (in general, 2-3 atmospheres) leading to augmented oxygen levels in the blood (Hyperoxemia) and tissue (Hyperoxia). The increased pressure and oxygen bioavailability might be related to a plethora of applications, particularly in hypoxic regions, also exerting antimicrobial, immunomodulatory and angiogenic properties, among others. In this review, we will discuss in detail the physiological relevance of oxygen and the therapeutical basis of HBOT, collecting current indications and underlying mechanisms. Furthermore, potential areas of research will also be examined, including inflammatory and systemic maladies, COVID-19 and cancer. Finally, the adverse effects and contraindications associated with this therapy and future directions of research will be considered. Overall, we encourage further research in this field to extend the possible uses of this procedure. The inclusion of HBOT in future clinical research could be an additional support in the clinical management of multiple pathologies.


Subject(s)
COVID-19 , Hyperbaric Oxygenation , Humans , Hypoxia , Oxygen , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL